DNA Mixture Interpretation Principles: Insights from the NIST Scientific Foundation Review

John M. Butler1, Hari Iyer2, Rich Press1, Melissa Taylor1, Peter M. Vallone3, Sheila Willis1

National Institute of Standards and Technology

1Special Programs Office, 2Statistical Engineering Division, and 3Applied Genetics Group
Acknowledgment and Disclaimers

I appreciate input on this project from Rich Cavanagh, Mike Coble (now at UNTHSC), Hari Iyer, John Paul Jones, Willie May (now at Morgan State University), Rich Press, Melissa Taylor, Pete Vallone, and Sheila Willis – and a 13-member DNA Mixtures Resource Group.

This work is funded by the NIST Special Programs Office.

Points of view are mine and do not necessarily represent the official position or policies of the National Institute of Standards and Technology.

Certain commercial entities are identified in order to specify experimental procedures as completely as possible. In no case does such identification imply a recommendation or endorsement by the National Institute of Standards and Technology, nor does it imply that any of the entities identified are necessarily the best available for the purpose.
Presentation Topics

• Mixture interpretation challenges and variation
• Importance of defining and understanding principles
• NIST Scientific Foundation Review: goals and progress
• Reflections on some insights learned
• Summary
What is the Biggest Challenge Forensics Laboratories Face Today? (ISHI 28 speakers were asked to share what they thought were the biggest challenges)

Chantal Frégeau, Royal Canadian Mounted Police

“From a Biology/DNA discipline perspective, the highly sensitive STR kits and capillary electrophoresis-based detection instruments currently used for forensic DNA typing analysis very often generate complex mixtures from “touch DNA” exhibits brought in by the investigators. The biggest challenge remains the interpretation of those complex mixtures and the determination of the relevance of a contributor’s DNA profile derived from an exhibit to the crime that has been committed. Probabilistic software can assist with the interpretation of complex mixtures but determining how the genotypes were deposited remains challenging (relevance to the crime).”

Bruce Budowle, UNTHSC

“Resources, education and training. Most of the issues we are facing seem to be related to these needs.”

https://www.ishinews.com/biggest-challenge-forensics-laboratories-face-today/
Sobering Thoughts from a 2014 Article

“There has been very little work published on the variation of reporting practices of mixtures between laboratories, but it has been previously demonstrated that there is little consistency. This is because there is no current uniformity of practice, so different laboratories will operate using different rules. The interpretation of mixtures is not solely a matter of using some software to provide ‘an answer.’…”

“We show that by introducing a structured training [program], it is possible to demonstrate, for the first time, that a high degree of standardization, leading to uniformity of results can be achieved by participating laboratories.”

NIST interlaboratory studies involving DNA mixtures (MIX05 and MIX13): Variation observed and lessons learned

John M. Butlera, Margaret C. Klineb, Michael D. Cobleb,1

aNational Institute of Standards and Technology, Special Programs Office, Gaithersburg, MD 20899, United States
bNational Institute of Standards and Technology, Applied Genomics Group, Gaithersburg, MD 20899, United States

What if probabilistic genotyping had been used?

All participants correctly included the reference profile “1A” and provided a statistic. Most of the laboratories inferred the genotype of the unknown contributor and provided either mRMP or LR statistics. However, a wide range of variation between methods was observed in the statistical values reported.”

MIX13 Case 1
2-person (1:1 ratio)

With 108 laboratories, observed variation was >20 orders of magnitude on the same data!

Table 4
PG results for NIST MIX13 case 1.

<table>
<thead>
<tr>
<th>Software</th>
<th>LR</th>
</tr>
</thead>
<tbody>
<tr>
<td>STRmix*</td>
<td>(1.4 \times 10^{20})</td>
</tr>
<tr>
<td>EuroForMix v1.10.0</td>
<td>(2.7 \times 10^{20})</td>
</tr>
<tr>
<td>EuroForMix v1.11.4</td>
<td>(1.5 \times 10^{20})</td>
</tr>
<tr>
<td>Lab Retriever</td>
<td>(4.1 \times 10^{15})</td>
</tr>
<tr>
<td>LRmix</td>
<td>(3.6 \times 10^{15})</td>
</tr>
</tbody>
</table>

Four probabilistic genotyping software (PGS) programs were run in a single laboratory on the NIST MIX13 profiles:

- STRmix and EuroForMix use continuous models (allele calls and peak heights)
- Lab Retriever and LRmix use discrete/semi-continuous models (allele calls only)

The discrete and continuous models are internally consistent, but over four orders of magnitude separate the results. This is to be expected when different input information is used.
Underlying Principles should be Published (and Understood)

• FBI QAS (2011, 2019) requires (8.2.2) peer-reviewed publication of **underlying scientific principles** of a technology
 • Defined by the QAS as “a rule concerning a natural phenomenon or function that is a part of the basis used to proceed to more detailed scientific functions”

• Can we define underlying (foundational) principles that govern DNA mixture interpretation to help us understand “why” something is important and what we should do in specific situations?
What is a “Foundational” Principle?

• It is relied upon as being **solid** (i.e., it can be trusted as tried and true)
• It is **established** (i.e., it has been around a while and demonstrated to be trustworthy through repeated studies)
• **The field is built upon it** (i.e., it serves as a center piece – a keystone – to support and underpin other parts of the structure or enterprise)

Retrievable Respected Reliable
NIST Scientific Foundation Reviews

• Requested and funded by Congress to examine forensic disciplines

• **Initial pilot study on DNA mixture interpretation**
 - Project begun in September 2017

• **6 NIST team members meet weekly with regular input from 13 forensic practitioners/researchers**
 (our “DNA Mixture Resource Group”)

• Examining the literature and studying issues…
 - >500 articles collected on DNA mixture interpretation
 - Seeking to compile underlying principles and assess claims

• **Report is being written for release (as a draft) later this year**
 - Plan to collect public comment on the report and reactions to its findings
 - Presentation at ISHI 2018 will discuss details, lessons learned, and important principles and challenges faced with DNA mixture interpretation
 - AAFS 2019 workshop planned to discuss the topic and report in detail
Initial Concerns Raised by Some Regarding Our Project

• Everything is fine with DNA – leave it be

• There are standards for DNA interpretation already
 • **FBI QAS 2011 9.6.4** Laboratories analyzing forensic samples shall have and follow a documented procedure for mixture interpretation that addresses major and minor contributors, inclusions and exclusions, and policies for the reporting of results and statistics.

• You need additional experts working on this study

• Available information is being ignored, such as unpublished validation studies
Who Is Involved in the NIST DNA Study?

• **NIST Review Team**
 - Role: conducting review & writing report
 - 6 people who meet weekly (listed as presentation co-authors on title slide)
 - Expertise: research, DNA literature, statistics, human factors, casework management, communications

• **Resource Group**
 - Role: providing input & sounding board
 - 13 practitioners & academics/consultants (Federal, state, local, and international) who provide periodic input & feedback
 - Expertise: DNA casework
 - *Will review draft report but are not being asked to endorse report conclusions or considerations (recommendations)*
Input Provided by a DNA Mixtures Resource Group

<table>
<thead>
<tr>
<th>Name</th>
<th>Affiliation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jack Ballantyne</td>
<td>University of Central Florida</td>
</tr>
<tr>
<td>Todd Bille</td>
<td>ATFE Laboratory, DNA Technical Leader</td>
</tr>
<tr>
<td>Jennifer Breaux</td>
<td>Montgomery County Police Crime Lab</td>
</tr>
<tr>
<td>Robin Cotton</td>
<td>Boston University School of Medicine</td>
</tr>
<tr>
<td>Roger Frappier</td>
<td>Centre of Forensic Sciences - Toronto</td>
</tr>
<tr>
<td>Bruce Heidebrecht</td>
<td>Maryland State Police, DNA Technical Leader</td>
</tr>
<tr>
<td>Keith Inman</td>
<td>Cal State East Bay & forensic DNA consultant</td>
</tr>
<tr>
<td>Eugene Lien</td>
<td>NYC OCME, DNA Technical Leader</td>
</tr>
<tr>
<td>Tamyra Moretti</td>
<td>FBI Laboratory, DNA Support Unit</td>
</tr>
<tr>
<td>Lisa Schiermeier-Wood</td>
<td>Virginia Department of Forensic Sciences</td>
</tr>
<tr>
<td>Joel Sutton</td>
<td>Defense Forensic Science Center, USACIL</td>
</tr>
<tr>
<td>Ray Wickenheiser</td>
<td>NYSP Laboratory Director (ASCLD President)</td>
</tr>
<tr>
<td>Charlotte Word</td>
<td>forensic DNA consultant</td>
</tr>
</tbody>
</table>

9 practitioners (3 Federal, 3 state, 2 local, 1 Canadian), **4 academics/consultants**
Where Are We Headed with Our DNA Study?

Primary Goals:

1. Develop a bibliography of foundational literature
2. Define underlying principles, characterize capabilities and limitations of methods for mixture analysis
3. Identify knowledge gaps for future research
4. Inform the forensic community and non-specialists of findings (judges, attorneys,& general public)
5. Create a framework for potential future NIST foundational reviews in forensic science (bitemarks already started)

Plan to complete a draft report by December 2018 (followed by AAFS workshop in February 2019)
Working on a Comprehensive, Curated Reference List

References for Scientific Foundation Review: DNA Mixture Interpretation

>500 articles collected so far
The Current Top Ten Articles*

* We reserve the right to revise this list with further reading or new publications…
Principles Contained in These Top Ten Articles

10. Are we addressing the right question(s) with our results?
9. Are we aware of possible stochastic effects?
8. Are we able to deconvolute the mixture into component genotypes?
7. Are we recognizing peaks in stutter positions as potential minor alleles?
6. Are we aware of variation in how others may approach a mixture?
5. Are we performing validation studies to estimate drop-out and drop-in probabilities with known samples?
4. Are we assessing performance with potential non-contributors?
3. Are we reporting results with clear propositions and limited significant figures?
2. Are we disclosing assumptions made and contextual information used?
1. Are we thinking carefully about the case data and context and not just feeding information into a computer program?
Overall Project Goal: Communicating Findings

Report

DNA Mixture Interpretation:
A NIST Scientific Foundation Review

This publication and its additional content is available free of charge from:
https://doi.org/10.6028/NIST.SP.1800-74

Supplemental Documents:

- Plain Language Summary
- Key Takeaways
- FAQs about this Report
- Why this is Important
- Considerations
- DNA Mixtures Explainer
- Public Documents
 - October 2017 press release
 - Report press release
 - PowerPoint presentations
 - SWGDAM
 - AAFS
 - ISHI
 - ...

Website

A Quick Primer on DNA Mixtures and Touch DNA
A Brief History
What is a DNA Profile?
DNA in Context: Transfer & Persistence
Why Complex Mixtures are Difficult to Interpret
Probabilistic Genotyping
Validation and Identifying Limits
What is NIST Doing to Help?
Report Chapters Planned

• Front Material: Acknowledgments and disclaimer
• Chapter 1: Scientific foundation review and purpose of study
• Chapter 2: DNA mixture background and historical timeline
• Chapter 3: Review process and input (materials and methods) – literature examined, criteria and terminology used
• Chapter 4: Relevance: case context including DNA transfer issues
• Chapter 5: Reliability: measurement and validation
• Chapter 6: Additional issues to consider: new technologies and forces at play
• Chapter 7: Considerations and summary
• Appendix: Reference list (with annotation)
Literature Searches Conducted for Chapter 5 Information

• Published validation studies examined
 • Prior to probabilistic genotyping, >65 developmental and internal validation studies were published
 • **Almost all contain only 2-person mixtures** with around five ratios (usually something like 9:1, 4:1, 1:1, 1:4, 1:9)

• Some observations
 • Most forensic DNA literature is methods focused and describes new markers or population data (i.e., it does not assess reliability of interpretation approaches)
 • Theoretical papers often describe a particular model and may perform some simulations with relatively little data presented
 • Often broad claims are made in validation studies without explicit support for these claims; **some claims are simply that SWGDAM validation guidelines were followed**
Published Validation Summaries for Chapter 5 Information

<table>
<thead>
<tr>
<th>Reference</th>
<th>Type of Validation</th>
<th>Instrument</th>
<th>Kit/Assay</th>
<th>Method</th>
<th>Mixtures Examined</th>
<th>Mixture Ratios Explored</th>
<th># Contributors Tested</th>
<th>DNA tested</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jäger 2017 FSIG 28:52-70</td>
<td>Developmental</td>
<td>MiSeq FGx</td>
<td>ForenSeq (Illumina)</td>
<td>NGS</td>
<td>NA12877/NA18507 (male/male); NA12878/NA19238 (female/female); NA12878/NA18507 (female/male)</td>
<td>9 ratios for MM and FF - 99.9:0.1 (999:1), 99:1, 95:5, 93.75:6.25, 90.9:9.1, 90:10, 87.5:12.5, 75:25, 50:50 (1:1); 4 ratios for FM - 95.5, 90:10, 75:25, 50:50</td>
<td>2person (male/male, female/female)</td>
<td>not clear</td>
</tr>
<tr>
<td>Du 2017 IJLM 131:605-620</td>
<td>Developmental</td>
<td>ABI 3500xl</td>
<td>HG19+14Y System (AGCU, China)</td>
<td>CE</td>
<td>9947A/9948 (1:1, 1:4, 1:9, 1:19); 9948/2800M (1:1, 1:4, 1:9, 1:19)</td>
<td>4 ratios - 19:1, 9:1, 4:1, 1:1</td>
<td>2person (male/female, male/male)</td>
<td>1 ng total</td>
</tr>
<tr>
<td>Cisana 2017 CMJ 58:26-33</td>
<td>Evaluation study</td>
<td>ABI 3500</td>
<td>PowerPlex Fusion 6C (Promega)</td>
<td>CE</td>
<td>1:1, 1:5, 1:10 (91pg & 909pg), 10:1, 5:1</td>
<td>5 ratios - 10:1, 5:1, 1:1, 1:5, 1:10</td>
<td>2person (male/female)</td>
<td>1 ng total</td>
</tr>
<tr>
<td>Kraemer 2017 FSIG 29:9-20</td>
<td>Developmental</td>
<td>ABI 3500</td>
<td>Investigator 24plex QS (Qiagen)</td>
<td>CE</td>
<td>1:15 (31 pg & 469 pg)</td>
<td>9 ratios - 15:1, 10:1, 7:1, 3:1, 1:1, 3:1, 1:3, 1:7, 1:10, 1:15</td>
<td>2person (male/female)</td>
<td>500 pg total</td>
</tr>
<tr>
<td>Li 2017 FSIG 27:67-73</td>
<td>Developmental</td>
<td>ABI 3130</td>
<td>Microreader 23sp ID (Suzhou, China)</td>
<td>CE</td>
<td>9947A/9948 (19:1, 9:1, 4:1, 2:1, 1:1)</td>
<td>5 ratios - 19:1, 9:1, 4:1, 2:1, 1:1</td>
<td>2person (male/female)</td>
<td>1 ng total</td>
</tr>
</tbody>
</table>

Claims for most of these articles is that they conducted enough experiments to meet the SWGDAM validation guideline requirements
Ideas going into Chapter 5 regarding validation

• Validation of a method is not binary or universal
• Verification of interpretation protocol performance is important
• Limitations can be best established with performance-based analyses

SWGDAM Validation Guidelines for DNA Analysis Methods (2016)

- 4.1 Known and nonprobative evidence samples
- 4.2 Sensitivity and stochastic studies
- 4.3 Precision and accuracy: repeatability
- 4.3 Precision and accuracy: reproducibility
- 4.4 Mixture studies
- 4.5 Contamination assessment

- 4.4 Mixed DNA samples that are representative of those typically encountered by the testing laboratory should be evaluated
Summary

• Input from our Resource Group has been extremely helpful in examining DNA mixture interpretation issues and challenges

• We should approach validation of DNA mixture interpretation methods from a performance basis rather than a list of tasks and tests to conduct
 • Future interlaboratory studies can assist

• There is value in identifying and spelling out foundational principles and why they matter

• It is important to communicate and work together as a community to improve performance with DNA mixture interpretation
Thank you for your attention!

DNA Mixture Interpretation
Scientific Foundation Review

301-975-4049
john.butler@nist.gov

www.nist.gov/forensics

Upcoming Meetings
Forensics@NIST
November 7-8, 2018

Research Innovation to Implementation (RI2I)
June 19-20, 2019